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In this paper, a remesh-free deformation method is reported to speed up the modeling of electric motor (EM) in optimal design. 

Neither the mesh regeneration nor an increase in the number of unknowns is required for the proposed method. Refined meshes can be 

quickly derived using a coordinate mapping technique. The calculation time can therefore be greatly reduced when the geometric 

parameters are changed during the optimal design process. At the same time, the mesh quality is guaranteed to ensure the FEM 

calculation is accurate. Numerical results are reported to demonstrate the efficiency and effectiveness of the proposed method.  
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I. INTRODUCTION 

PTIMAL DESIGN of electric motor (EM) is generally 

complex and time-consuming, since it is intervening with 

geometrical changes in the parameters of the device during the 

optimization process [1-3]. For numerical simulations based 

on finite element method (FEM), a conforming mesh with 

good quality as well as suitable mesh density is needed in the 

pre-processing phase. Usually, constructing an acceptable 

mesh is complicated and time-consuming, especially in 

complex problems such as in the parametric optimization of 

motors. The computing time for mesh generation is generally 

excessively long and sometimes it might take up more than 

80% of the total computing time [4]. Robust and simple mesh 

deformation methods that can reduce the total optimization 

time are therefore particularly meaningful.  

In this paper, a robust and simple mesh deformation 

technique is proposed for fast and accurate EM optimization 

studies. Compared with existing mesh deformation methods, 

the solution of the partial differential equations (e.g. Laplace 

equation) [1] or radial basis functions [5] is avoided. 

Consequently the computation complexity as well as its 

computational cost is relatively low. In addition, the proposed 

method is applicable to any existing mesh without considering 

the mesh generation method. Great flexibility is thus being 

factored into the implementation of the proposed method.  

II. PROPOSED MESH DEFORMATION TECHNOLOGY 

A novel mesh morphing method is proposed for fast and 

robust mesh deformation, both in two-dimensional (2-D) and 

three-dimensional (3-D) cases with simple implementation 

procedure. 

Firstly, a constrained boundary mesh is constructed for a set 

of fine mesh, which covers all movable nodes in the fine mesh 

and serves as a deformable skeleton during mesh morphing. 

Selection of the boundary mesh is simple and does not need to 

conform exactly to the outline geometry of the device.  

 Secondly, the area coordinates of all the nodes in the fine 

mesh with respect to the boundary mesh are calculated and 

saved by applying a coordinate mapping technique, in which 

the coordinates of each node in the fine mesh can be expressed 

as a function (area coordinates) of the elements in the 

boundary mesh. This process is required once and only once. 

When the mesh needs to be updated due to changes in 

geometry, one only needs to reset the coordinates of the nodes 

in the boundary mesh. The new fine mesh can then be updated 

according to the new boundary mesh and the area coordinates 

which remain unchanged. 

III. COORDINATE MAPPING TECHNIQUE 

Coordinate mapping is the key underlying technique for the 

proposed remesh-free method. It is used to determine the 

relative locations of the nodes of the fine mesh inside the 

boundary mesh. In this paper, the barycentric coordinate (also 

known as area coordinates in the context of a triangle) 

mapping approach is applied because it is robust and easy to 

implement. One can however use other mapping methods in a 

similar way. 

Assume X1 ,…, Xn are the vertices of an element e (a 

triangle, tetrahedron, etc.) in the boundary mesh. Then for 

another point P in e, if the following equation (1) is satisfied 

and with at least one of the coefficients (a1 ,…, an) not being 

equal to zero, the coefficients are called area coordinates of P 

with respect to X1 ,…, Xn.  

P = a1X1 + … + anXn                          (1) 

When the restriction 1ia   is imposed, the corresponding 

area coordinates are uniquely determined.  

With respect to a triangle, the barycentric coordinates can 

be considered as proportional to the areas of triangles 

constructed by the vertices and the given point P, hence the 

barycentric coordinates are also called area coordinates. 
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Fig. 1. The model and parameters for: (a) The initial model; (b) The deformed 

model. Both the fine mesh and the boundary mesh (red solid lines) for the (c) 

Initial model; and (d) The deformed model. 

IV. NUMERICAL EXPERIMENTS 

Firstly, the proposed remesh free method is introduced by a 

simple 2-D deformable object as shown in Fig. 1. The inner 

square is assumed to be enlarged as shown in the figure. The 

boundary mesh can be arbitrarily chosen as long as the 

boundary mesh can exactly govern all the movable nodes (as 

shown in Figs. 1(c) and (d) with red lines). The new mesh can 

be updated according to the new boundary mesh and the 

unchanged area coordinates (as shown in Fig. 1 (d)). 

Secondly, the method is expanded to a 3-D case as shown in 

Fig. 2. There is a cubic object inside a ball and the inner cube 

is assumed to be deformed into a smaller one as shown in Figs. 

2(a) to 2(d).  

 

a b
 

c d
 

Fig. 2. (a) The cut view of the initial 3-D fine mesh. (b) 3-D view of the initial 
fine mesh. (c) The cut view of the deformed mesh using the proposed method. 

(d) 3-D view of the deformed mesh. 

 

The proposed algorithm is a robust and general mesh 

deformation method. More complicated cases will be 

introduced in the full paper to showcase the efficiency and 

effectiveness of the proposed method. An existing fine mesh 

of a permanent magnet (PM) motor with 23049 nodes and 

38442 elements is taken as an illustrating example. Two 

geometric parameters, namely the depth of PMs and the width 

of the teeth, are assumed to be changed during the 

optimization process. The enlarged view of the newly updated 

meshes are given in Fig. 3 and Fig. 4, respectively. One can 

clearly see that the mesh has been updated without changing 

the mesh connection relationship.  

In these two illustrating examples, the average CPU time 

needed to compute the area coordinates of the nodes in the 

fine mesh is about 0.0478s and 0.0011s is needed for updating 

the mesh by mapping back these coordinates to the Cartesian 

ones. This is to be compared to about 8s which is required to 

regenerate such a mesh. Clearly, significant computational 

time is saved. 
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Fig. 3. (a) The enlarged view of the initial fine mesh. (b) The enlarged view of 

the fine mesh when the depth of PMs has been changed. 
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Fig. 4. (a) The enlarged view of the initial fine mesh. (b) The enlarged view of 

the fine mesh when the width of the teeth has been changed. 
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